#define PROBLEM "https://yukicoder.me/problems/no/1099" #include <iostream> #include "Mylib/AlgebraicStructure/Monoid/sum.cpp" #include "Mylib/AlgebraicStructure/MonoidAction/add_square_sum.cpp" #include "Mylib/DataStructure/SegmentTree/lazy_segment_tree.cpp" #include "Mylib/IO/input_tuples.cpp" #include "Mylib/IO/input_vector.cpp" namespace hl = haar_lib; using sum = hl::sum_monoid<int64_t>; int main() { std::cin.tie(0); std::ios::sync_with_stdio(false); int N; std::cin >> N; auto A = hl::input_vector<int64_t>(N); hl::lazy_segment_tree<hl::add_square_sum<sum>> seg(N); seg.init_with_vector(A); int Q; std::cin >> Q; for (auto [type] : hl::input_tuples<int>(Q)) { if (type == 1) { int l, r, x; std::cin >> l >> r >> x; seg.update(l - 1, r, x); } else { int l, r; std::cin >> l >> r; std::cout << seg.fold(l - 1, r).square_sum << "\n"; } } return 0; }
#line 1 "test/yukicoder/1099/main.test.cpp" #define PROBLEM "https://yukicoder.me/problems/no/1099" #include <iostream> #line 2 "Mylib/AlgebraicStructure/Monoid/sum.cpp" namespace haar_lib { template <typename T> struct sum_monoid { using value_type = T; value_type operator()() const { return 0; } value_type operator()(value_type a, value_type b) const { return a + b; } }; } // namespace haar_lib #line 2 "Mylib/AlgebraicStructure/MonoidAction/add_square_sum.cpp" #include <utility> namespace haar_lib { template <typename MonoidUpdate> struct add_square_sum { struct internal_type { using value_type = typename MonoidUpdate::value_type; value_type sum, square_sum; internal_type(value_type value) : sum(value), square_sum(value * value) {} internal_type(value_type sum, value_type square_sum) : sum(sum), square_sum(square_sum) {} }; struct monoid_get { using value_type = internal_type; value_type operator()() const { return {0, 0}; }; value_type operator()(const value_type &a, const value_type &b) { return {a.sum + b.sum, a.square_sum + b.square_sum}; } }; using monoid_update = MonoidUpdate; using value_type_get = typename monoid_get::value_type; using value_type_update = typename MonoidUpdate::value_type; value_type_get operator()(const value_type_get &a, const value_type_update &b, int len) const { return { a.sum + b * len, a.square_sum + b * (2 * a.sum + b * len)}; } }; } // namespace haar_lib #line 2 "Mylib/DataStructure/SegmentTree/lazy_segment_tree.cpp" #include <cassert> #include <vector> namespace haar_lib { template <typename Monoid> class lazy_segment_tree { public: using monoid_get = typename Monoid::monoid_get; using monoid_update = typename Monoid::monoid_update; using value_type_get = typename monoid_get::value_type; using value_type_update = typename monoid_update::value_type; private: Monoid M_; monoid_get M_get_; monoid_update M_update_; int depth_, size_, hsize_; std::vector<value_type_get> data_; std::vector<value_type_update> lazy_; void propagate(int i) { if (lazy_[i] == M_update_()) return; if (i < hsize_) { lazy_[i << 1 | 0] = M_update_(lazy_[i], lazy_[i << 1 | 0]); lazy_[i << 1 | 1] = M_update_(lazy_[i], lazy_[i << 1 | 1]); } const int len = hsize_ >> (31 - __builtin_clz(i)); data_[i] = M_(data_[i], lazy_[i], len); lazy_[i] = M_update_(); } void propagate_top_down(int i) { std::vector<int> temp; while (i > 1) { i >>= 1; temp.push_back(i); } for (auto it = temp.rbegin(); it != temp.rend(); ++it) propagate(*it); } void bottom_up(int i) { while (i > 1) { i >>= 1; propagate(i << 1 | 0); propagate(i << 1 | 1); data_[i] = M_get_(data_[i << 1 | 0], data_[i << 1 | 1]); } } public: lazy_segment_tree() {} lazy_segment_tree(int n) : depth_(n > 1 ? 32 - __builtin_clz(n - 1) + 1 : 1), size_(1 << depth_), hsize_(size_ / 2), data_(size_, M_get_()), lazy_(size_, M_update_()) {} void update(int l, int r, const value_type_update &x) { assert(0 <= l and l <= r and r <= hsize_); propagate_top_down(l + hsize_); if (r < hsize_) propagate_top_down(r + hsize_); int L = l + hsize_, R = r + hsize_; while (L < R) { if (R & 1) { --R; lazy_[R] = M_update_(x, lazy_[R]); propagate(R); } if (L & 1) { lazy_[L] = M_update_(x, lazy_[L]); propagate(L); ++L; } L >>= 1; R >>= 1; } bottom_up(l + hsize_); if (r < hsize_) bottom_up(r + hsize_); } void update(int i, const value_type_update &x) { update(i, i + 1, x); } value_type_get fold(int l, int r) { assert(0 <= l and l <= r and r <= hsize_); propagate_top_down(l + hsize_); if (r < hsize_) propagate_top_down(r + hsize_); value_type_get ret_left = M_get_(), ret_right = M_get_(); int L = l + hsize_, R = r + hsize_; while (L < R) { if (R & 1) { --R; propagate(R); ret_right = M_get_(data_[R], ret_right); } if (L & 1) { propagate(L); ret_left = M_get_(ret_left, data_[L]); ++L; } L >>= 1; R >>= 1; } return M_get_(ret_left, ret_right); } value_type_get fold_all() { return fold(0, hsize_); } value_type_get operator[](int i) { return fold(i, i + 1); } template <typename T> void init(const T &val) { init_with_vector(std::vector<T>(hsize_, val)); } template <typename T> void init_with_vector(const std::vector<T> &val) { data_.assign(size_, M_get_()); lazy_.assign(size_, M_update_()); for (int i = 0; i < (int) val.size(); ++i) data_[hsize_ + i] = (value_type_get) val[i]; for (int i = hsize_; --i > 0;) data_[i] = M_get_(data_[i << 1 | 0], data_[i << 1 | 1]); } }; } // namespace haar_lib #line 2 "Mylib/IO/input_tuples.cpp" #include <initializer_list> #line 4 "Mylib/IO/input_tuples.cpp" #include <tuple> #line 6 "Mylib/IO/input_tuple.cpp" namespace haar_lib { template <typename T, size_t... I> static void input_tuple_helper(std::istream &s, T &val, std::index_sequence<I...>) { (void) std::initializer_list<int>{(void(s >> std::get<I>(val)), 0)...}; } template <typename T, typename U> std::istream &operator>>(std::istream &s, std::pair<T, U> &value) { s >> value.first >> value.second; return s; } template <typename... Args> std::istream &operator>>(std::istream &s, std::tuple<Args...> &value) { input_tuple_helper(s, value, std::make_index_sequence<sizeof...(Args)>()); return s; } } // namespace haar_lib #line 8 "Mylib/IO/input_tuples.cpp" namespace haar_lib { template <typename... Args> class InputTuples { struct iter { using value_type = std::tuple<Args...>; value_type value; bool fetched = false; int N, c = 0; value_type operator*() { if (not fetched) { std::cin >> value; } return value; } void operator++() { ++c; fetched = false; } bool operator!=(iter &) const { return c < N; } iter(int N) : N(N) {} }; int N; public: InputTuples(int N) : N(N) {} iter begin() const { return iter(N); } iter end() const { return iter(N); } }; template <typename... Args> auto input_tuples(int N) { return InputTuples<Args...>(N); } } // namespace haar_lib #line 4 "Mylib/IO/input_vector.cpp" namespace haar_lib { template <typename T> std::vector<T> input_vector(int N) { std::vector<T> ret(N); for (int i = 0; i < N; ++i) std::cin >> ret[i]; return ret; } template <typename T> std::vector<std::vector<T>> input_vector(int N, int M) { std::vector<std::vector<T>> ret(N); for (int i = 0; i < N; ++i) ret[i] = input_vector<T>(M); return ret; } } // namespace haar_lib #line 9 "test/yukicoder/1099/main.test.cpp" namespace hl = haar_lib; using sum = hl::sum_monoid<int64_t>; int main() { std::cin.tie(0); std::ios::sync_with_stdio(false); int N; std::cin >> N; auto A = hl::input_vector<int64_t>(N); hl::lazy_segment_tree<hl::add_square_sum<sum>> seg(N); seg.init_with_vector(A); int Q; std::cin >> Q; for (auto [type] : hl::input_tuples<int>(Q)) { if (type == 1) { int l, r, x; std::cin >> l >> r >> x; seg.update(l - 1, r, x); } else { int l, r; std::cin >> l >> r; std::cout << seg.fold(l - 1, r).square_sum << "\n"; } } return 0; }