#pragma once #include <stack> #include <vector> #include "Mylib/Graph/Template/graph.cpp" namespace haar_lib { template <typename T> std::vector<T> tree_distance(const tree<T> &tr, int root) { const int n = tr.size(); std::vector<T> ret(n); std::vector<bool> visited(n); std::stack<int> st; st.push(root); ret[root] = 0; while (not st.empty()) { int cur = st.top(); st.pop(); visited[cur] = true; for (auto &e : tr[cur]) { if (not visited[e.to]) { ret[e.to] = ret[cur] + e.cost; st.push(e.to); } } } return ret; } } // namespace haar_lib
#line 2 "Mylib/Graph/TreeUtils/tree_distance.cpp" #include <stack> #include <vector> #line 2 "Mylib/Graph/Template/graph.cpp" #include <iostream> #line 4 "Mylib/Graph/Template/graph.cpp" namespace haar_lib { template <typename T> struct edge { int from, to; T cost; int index = -1; edge() {} edge(int from, int to, T cost) : from(from), to(to), cost(cost) {} edge(int from, int to, T cost, int index) : from(from), to(to), cost(cost), index(index) {} }; template <typename T> struct graph { using weight_type = T; using edge_type = edge<T>; std::vector<std::vector<edge<T>>> data; auto& operator[](size_t i) { return data[i]; } const auto& operator[](size_t i) const { return data[i]; } auto begin() const { return data.begin(); } auto end() const { return data.end(); } graph() {} graph(int N) : data(N) {} bool empty() const { return data.empty(); } int size() const { return data.size(); } void add_edge(int i, int j, T w, int index = -1) { data[i].emplace_back(i, j, w, index); } void add_undirected(int i, int j, T w, int index = -1) { add_edge(i, j, w, index); add_edge(j, i, w, index); } template <size_t I, bool DIRECTED = true, bool WEIGHTED = true> void read(int M) { for (int i = 0; i < M; ++i) { int u, v; std::cin >> u >> v; u -= I; v -= I; T w = 1; if (WEIGHTED) std::cin >> w; if (DIRECTED) add_edge(u, v, w, i); else add_undirected(u, v, w, i); } } }; template <typename T> using tree = graph<T>; } // namespace haar_lib #line 5 "Mylib/Graph/TreeUtils/tree_distance.cpp" namespace haar_lib { template <typename T> std::vector<T> tree_distance(const tree<T> &tr, int root) { const int n = tr.size(); std::vector<T> ret(n); std::vector<bool> visited(n); std::stack<int> st; st.push(root); ret[root] = 0; while (not st.empty()) { int cur = st.top(); st.pop(); visited[cur] = true; for (auto &e : tr[cur]) { if (not visited[e.to]) { ret[e.to] = ret[cur] + e.cost; st.push(e.to); } } } return ret; } } // namespace haar_lib